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We investigate the possible limit distributions of zeros and poles associated with
ray sequences of rational functions that are asymptotically optimal for weighted
Zolotarev problems. For disjoint compacta E1 , E2 in the complex plane, the
Zolotarev problem entails minimizing the ratio of the sup over E1 of the modulus
of a weighted rational to its inf over E2 . Potential theoretic tools are utilized in the
analysis. � 2001 Academic Press
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1. INTRODUCTION

Let E1 , E2 be closed sets in the complex plane C that are a positive
distance apart. Given a pair (m, n) of non-negative integers, denote by
Rmn the class of all rational functions in the complex variable z whose
numerator and denominator degrees are m and n, respectively. Let w be an
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admissible weight (see Definition 2.1) on E1 _ E2 . Given r # Rmn , consider
the quantity

Zmn(r; w) :=
supz # E1

[ |r(z)| w(z)m+n]

infz # E2
[ |r(z)| w(z)m+n]

(1.1)

and set

Zmn(w) :=inf[Zmn (r; w): r # Rmn ]. (1.2)

We call Zmn(w) the weighted Zolotarev constant of type (m, n) for the con-
denser (E1 , E2). Next, fix 0<{<1 and consider a ``ray sequence'' of pairs
(m, n), namely a sequence N{ for which

m+n � �,
m
n

�
{

1&{
. (1.3)

Our first task will be to show that for any such N{ ,

lim
(m, n) # N{

[Zmn (w)]1�(m+n)=exp(&Fw, {), (1.4)

where Fw, { is a quantity that arises in the solution to a certain energy
problem discussed in Section 2. This generalizes a previous result obtained
by the authors [LeSa].

Next, to each

rmn(z)=
>m

i=1 (z&:im)
>n

i=1 (z&;in)
(1.5)

we associate the normalized distribution

&(rmn) :=
1

m+n { :
m

i=1

$:im
& :

n

i=1

$;in= , (1.6)

where, generically, $z stands for the point distribution with total mass 1
at z. Given a ray sequence N{ (cf. (1.3)), we call the sequence [rmn], rmn #
Rmn , asymptotically extremal if

lim
(m, n) # Nr

[Zmn (rmn ; w)]1�(m+n)=exp(&Fw, {). (1.7)

We shall see, in the course of the proof of (1.4), that there exists such [rmn]
for which &(rmn) converges to the equilibrium distribution +* for the above
mentioned energy problem. The convergence is understood in the weak-
star sense on the Riemann sphere C� , that is we write +n � + if � f d+n � � f d+,
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for every f that is continuous on C� . Simple examples show that there may
be other asymptotically extremal sequences [rmn] for which &(rmn) � +{+*.

The main objective of this paper is to describe all possible weak-star
limits of sequences [&(rmn)] associated with asymptotically extremal
sequences [rmn]. We will concentrate on the case of bounded E1 , E2 . The
case of unbounded sets requires additional assumptions on the weight.
These are briefly discussed at the end of the paper.

2. TWO EXTREMAL PROBLEMS OF POTENTIAL THEORY

We take the weight in the form w=exp(&Q), where Q is a function
from E1 _ E2 to the extended real line [&�, �].

Definition 2.1. Let E1 , E2 be disjoint compacta in C, both of positive
logarithmic capacity. A weight w=exp(&Q) is called admissible if the
following conditions hold:

(i) Q is a lower (upper) semicontinuous function on E1 (on E2)

(ii) Q<� (Q>&�) on a subset of E1 (of E2) that has positive
logarithmic capacity.

We remark that a lower (upper) semicontinuous function does not
attain, by definition, the value &� (+�).

Given 0<{<1, let M{ denote the set of all signed measures +=+1&+2

that have a compact support in C and satisfy &+1&={, &+2&=1&{. If,
additionally, S(+i)/Ei , i=1, 2, we write + # M{ (E1 , E2). Here and
throughout, S stands for the support of indicated measure.

With the usual notation

U+ (z) :=| log
1

|z&t|
d+(t),

I(+) :=| U + d+=|| log
1

|z&t|
d+(z) d+(t),

consider the following extremal problems:

V=Vw, { :=inf {I(+)+2 | Q d+ : + # M{ (E1 , E2)= (2.1)

F=Fw, { :=sup [``inf
E1

''(U++Q)&``sup
E2

''(U++Q) : + # M{], (2.2)
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where ``inf '' and ``sup'' mean, respectively, inf and sup neglecting sets of
zero capacity.

The following result is well-known (cf. [SaTo, p. 383]):

Theorem 2.2. Let E1 , E2 , and w be as above. Then for any 0<{<1,

(i) Vw, { is finite and there exists a unique

+*=+*w, {=+1*&+2* # M{ (E1 , E2)

for which Vw, {=I(+*)+2 � Q d+*.

(ii) +* has finite logarithmic energy and both U+* and Q are bounded
on S(+*). Consequently, U+* is bounded on compact subsets of C.

(iii) There exist constants F1 , F2 (depending on w, {) such that

U+*+Q�F1 on S(+1*), U+*+Q�F1 q.e. on E1 ,

U+*+Q�&F2 on S(+2*), U+*+Q� &F2 q.e. on E2

(here and throughout q.e. means neglecting sets of zero capacity). Conse-
quently,

U+*+Q={F1

&F2

q.e. on S(+1*)
q.e. on S(+2*).

(2.3)

(iv) For any + # M{ ,

``inf
E1

''(U++Q)&``sup
E2

''(U++Q)�F1+F2 . (2.4)

We see from Theorem 2.2(iii), (iv) that the value Fw, { in problem (2.2) is
equal to F1+F2 and it is attained for +=+*. However, an extremal
measure for this problem may be not unique (see Examples 2.4, 2.5 below);
hence we introduce

Definition 2.3. Given + # M{ , we say that + # M {*=M {*(w) if

``inf
E1

''(U++Q)&``sup
E2

''(U++Q)=F1+F2 .

We adopt the simplified notation

F1 (+) :=``inf
E1

''(U ++Q), &F2 (+) :=``sup
E2

''(U++Q), (2.5)
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so that the above definition takes the form

M {*=M {*(w)=[+ # M{ : F1 (+)+F2 (+)=F1+F2] (2.6)

(where Fi=Fi (+*), i=1, 2).

Example 2.4. Let E1 be the circle |z|=1 and let E2 be the union of the
circles |z|=R1 , |z|=R2 , 1<R1<R2 . Assuming {<1�2, take any : that
satisfies

0�:�
{

1&{
(<1) (2.7)

and consider +=+1&+2 # M{ that is defined by

+1 ={
1

2?
d% on |z|=1,

(2.8)

+2=(1&{)
1

2? {
: d%
(1&:) d%

on |z|=R1

on |z|=R2

(d% stands for the angular measure on the indicated circle). Simple calcula-
tion gives (we take Q#0 in this example)

inf
E1

U+&sup
E2

U +={ log R1 . (2.9)

On the other hand, the extremal measure +*=+1*&+2*, being unique,
must have the form (2.8), for some : # [0, 1]. Utilizing Theorem 2.2(iii), we
find that this : is equal to {�(1&{). Therefore (2.7) to (2.9) show that any
+ that is given by (2.7), (2.8) belongs to M {*. Note that S(+)=S(+*) if
:{0, while S(+1)=S(+1*), S(+2)/S(+2*) if :=0.

Our next example shows that there may be + # M {* for which S(+2) inter-
sects E1 or even intersects Int E1 (the interior of E1).

Example 2.5. Let E1 be the union of the circle |z|=r<1, and the set
R�|z|�2R, R>1. Let E2 be the circle |z|=1. Again, we take Q#0. It
can be shown (cf. [LeSa, Example 5.2], where |z|=R rather than
R�|z|�2R was considered) that for

{<{0 :=
log R

log R+log(R�r) \<
1
2+
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we have F1+F2={ log(1�r), while +* is given by

+1*={
1

2?
d% on |z|=r,

+2*=(1&{)
1

2?
d% on |z|=1.

Define + # M{ by

+1 ={
1

2?
d% on |z|=r,

(2.10)

+2=(1&{)
1

2? {
: d%
(1&:) d%

on |z|=1
on |z|=R1 , R1�R

with : satisfying

1>:�
{

1&{
1&{0

{0

. (2.11)

Calculation shows that the corresponding potential satisfies

{ log
1
r

&(1&{)(1&:) log
1

R1

, |z|=r

U+ (z)={{ log
1
|z|

&(1&{) : log
1
|z|

&(1&{)(1&:) log
1

R1

, |z|�R

&(1&{)(1&:) log
1

R1

, |z|=1.

The condition (2.11) ensures that the value of U+ on |z|=r does not exceed
any of its values on |z|�R. Therefore,

F1 (+)+F2 (+)={ log
1
r

,

so that + # M {*.
Note that S(+2) has points on the boundary of E1 (if R1=R, say) or in

the interior of E1 (if R<R1<2R). In the latter case no asymptotically
extremal sequence [rmn] exists, for which &(rmn) � + (otherwise, rmn would
have poles on E1 , which would imply Zmn=�). Note also, that as R1 � �,
the corresponding part of +2 converges to a point mass at �. Since the
measures in M {* are supposed to have a compact support, we see that M {*
may not be closed in the weak-star topology.
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Finally, we could introduce here a weight by setting Q=0 for |z|=r and
for |z|=1, and by choosing Q to be an arbitrary positive lower semicon-
tinuous function for R�|z|�2R. Since the value of the original U+* on
|z|=r did not exceed any of its values on R�|z|�2R, we easily deduce
that, for the new problem, +*, F1 , F2 remain the same. Therefore + that is
given by (2.10), (2.11) is again in M {*, but now Q may be unbounded on
S(+2) & Int E1 . Compare this with the assertion (ii) of Theorem 2.2, accord-
ing to which Q must be bounded on S(+*).

3. ASYMPTOTICS OF Zmn(w)

Theorem 3.1. Let w be an admissible weight on E1 _ E2 , and let N{ be
a ray sequence (cf. (1.3)). Then

lim
(m, n) # N{

[Zmn (w)]1�(m+n)=exp(&Fw, {). (3.1)

Moreover, let +=+1&+2 # M {* be such that

S(+1) & E2=<, S(+2) & E1=<. (3.2)

(In particular, this holds for +=+*.) Then an asymptotically extremal
sequence [rmn], (m, n) # N{ , exists for which

&mn :=&(rmn) � +, (m, n) # N{ . (3.3)

Proof. This follows the same lines as the proof in [LeSa, Sect. 6], so we
will be brief.

For any r # Rmn we have (recall (1.1), (1.5), (1.7), (2.4))

&
1

m+n
log Zmn (r; w)=inf

E1

(U &mn+Q)&sup
E2

(U &mn+Q)

�``inf
E1

''(U &mn+Q)&``sup
E2

''(U &mn+Q)

�Fw, {mn
,

where

{mn :=
m

m+n
� {, (m, n) # N{ ,

by (1.3).
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Since Fw, { is a concave (therefore continuous) function of { on (0, 1) (the
proof is the same as in [LeSa, p. 242]), we conclude that for any sequence
N{ there holds

lim inf
(m, n) # N{

[Zmn (w)]1�(m+n)�exp(&Fw, {). (3.4)

Next, since + # M{* , we have F1 (+)+F2 (+)=Fw, { , and the exceptional sets

E1 (=) :=[z # E1 : U+ (z)+Q(z)�F1 (+)&=]

E2 (=) :=[z # E2 : U+ (z)+Q(z)�&F2 (+)+=]

have zero capacity, for any =>0.
Let _= # M{ (E1 , E2) be such that U_==+� on E1 (=), U_==&� on

E2 (=). Then, given any 0<:<1, one can construct a sequence [&mn] # M{mn
,

&mn=
1

m+n { :
m

i=1

$:im
& :

n

i=1

$;in==: &mn, 1&&mn, 2 ,

where :im # E1 (=) _ S(+1), ;in # E2 (=) _ S(+2), and such that

&mn � (1&:) ++:_= , (m, n) # N{ .

By (3.2), we obtain that U&mn, 1 � U (1&:) +1+:_=, 1 on E2 , and U&mn, 2 �
U (1&:) +2+:_=, 2 on E1 . Using these relations, the principle of descent and semi-
continuity property of Q, one obtains as in [LeSa] that

lim sup
(m, n) # N{

(Zmn(rmn , w))1�(m+n)�exp(&Fw, { (:, =)),

where

Fw, { (:, =) :=(1&:) Fw, {&2(1&:) =&:c(=)

and rmn # Rmn is constructed by (1.5).
Now, on first letting : � 0 and then = � 0 and utilizing the standard

diagonal procedure, one can construct some sequence N{ of the form (1.3)
such that &mn � +, (m, n) # N{ , while

lim sup
(m, n) # N{

[Zmn(rmn ; w)]1�(m+n)�exp(&Fw, {).

Together with (3.4) this proves (3.1) as well as the fact that rmn is a desired
sequence. The passage from some N{ to any N{ is simple (cf. [LeSa,
pp. 255�256]). K
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In many cases one can relax (3.2) to the condition

S(+1) & Int E2=<, S(+2) & Int E1=<. (3.5)

The idea is as follows. Given a set D and =>0, let

D= :=[z: dist(z, D)<=] (3.6)

denote the open =-neighborhood of D.
Take =>0 small enough so that E =

1 & E =
2=<. Then, replace that part of +1

(of +2) that sits on E =
2 (on E =

1) by its balayage on the boundary �E =
2 (�E =

1).
Let +=

1 , +=
2 be the resulting measures. By the known properties of balayage, we

have that += :=+=
1&+=

2 # M{ , while

F1 (+=)+F2 (+=)�F1 (+)+F2 (+).

Since + # M{*, we obtain (see Theorem 2.2(iv)) that += # M {* as well, but now
+= satisfies (3.2). If we knew that += �+ as = � 0, we could apply Theorem 3.1
to += and then, on letting = � 0 and using he diagonal procedure, we could
construct the desired asymptotically extremal sequence [rmn].

Obviously, (3.5) is necessary for += � +. Following are several conditions
each of which ensures that += � +.

Theorem 3.2. Let += be as above. Assume that (3.5) holds and, in addition,
one of the following conditions is satisfied:

(i) We have

+1 (�(Int E2)I)=+2 (�(Int E1)I)=0, (3.7)

where �(Int Ei)
I/�Ei denotes the set of irregular points of all components of

Int Ei , i=1, 2.

(ii) U+1 is bounded on every component of Int E2 , while U+2 is bounded
on every component of Int E1 .

(iii) Q is bounded on the set �E1 _ �E2 .

Then += � + as = � 0 and, consequently, the second assertion of Theorem 3.1
holds true.

Corollary 3.3. Assume

Int E1=Int E2=<. (3.8)

Then the second assertion of Theorem 3.1 holds for any + # M{*.
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Corollary 3.4. If every component of Int Ei , i=1, 2, is regular, then the
second assertion of Theorem 3.1 holds for any + # M{* that satisfies (3.5).

Corollary 3.5. If Q is bounded on E1 _ E2 , then the condition (3.5) is
necessary and sufficient for the second assertion of Theorem 3.1 to be true.

These corollaries are obvious. Concerning the necessity of (3.5) in
Corollary 3.5, we refer to the end of Section 2.

Proof of Theorem 3.2. We will show that our assumptions imply +=
1 � +1

as = � 0. The proof of +=
2 � +2 is similar. Let =n a0. Then [U+

1
=n] is an increas-

ing sequence majorized by U+1. Therefore there is a measure +~ 1 (obviously,
S(+~ 1) & Int E2=<) such that +=n

1 � +~ 1 and U+
1
=n � U+~ 1 in C.

Since U+
1
=n=U+1 outside E =n

2 , we see that U+~ 1=U+1 in C"E2 . This implies
that U+~ 1=U+1 q.e. on �E2 . (Indeed, this is true, by definition for any point of
�E2 that is regular for C"E2 , and the set of irregular points has zero capacity,
by Kellogg's Lemma [La, p. 232]).

It remains to show that U+~ 1=U+1 in Int E2 , since then we obtain U+~ 1=U+1

q.e. in C, which yields +~ 1=+1 .
Let G be any (connected) component of Int E2 . Assuming (i), we see that

the set of irregular points of G has +1-measure zero. Let z # G, $z be the point
mass at z, and $� z be its balayage on �G. Since U$z=U$� z outside G and at
regular points of �G, we have

U+1 (z)=| U$z d+1=| U$� z d+1=| U+1 d$� z ,

the last equality following by Fubini's theorem. Next, as $� z is C-absolutely
continuous (cf. [SaTo, p. 115]) and U+1=U+~ 1 q.e. on �G, we obtain

| U+1 d$� z=| U+~ 1 d$� z=| U$� z d+~ 1 .

Finally, since U$� z�U$z everywhere, we have

| U$� z d+~ 1�| U$z d+~ 1=U+~ 1 (z).

It then follows that

U+1 (z)�U+~ 1 (z), z # G.

Since we also have U+1�U+~ 1, we conclude that these potentials coincide in G.
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Assume now that (ii) holds. Since U+1 is bounded from above on G and U+~ 1

is bounded from below, we see that U+1&U+~ 1 is a nonnegative harmonic func-
tion in G that is bounded in G and equals 0 q.e. on �G. Since G is connected,
every point of �G is a fine limit point of G. The continuity of potentials in the
fine topology then yields, for q.e. z # �G,

lim
` # G
` � z

(U+1&U+~ 1)(`)=U+1 (z)&U+~ 1 (z)=0.

The maximum principle then implies that U+1=U+~ 1 in G.
Finally, we show that (iii) O (ii). It suffices to prove that (iii) implies finite-

ness of U+1 at every point of �E2 , since then the above fine topology argument
yields boundedness of U+1 in any component G of Int E2 . Assume U+1 (z)=�,
z # �E2 . Then z # �E2 & S(+1). We shall see in the next section that S(+1) &
S(+2) = < for any + # M{*. Thus, U+2 � C in some neighborhood of z. Also,
Q�&C1 on �E2 . Since

U+1&U+2+Q�&F2 (+) q.e. on E2 ,

we conclude that there exists a disk Dz , centered at z, such that cap(Dz &
�E2)=0 (otherwise, the lower semicontinuity of U+1 would imply U+1(z)�
&F2 (+)+C+C1). But this is impossible, since Dz contains points of
G/Int E2 as well as points of C"E2 . Therefore Dz must contain a continuum
belonging to �E2 , which implies that cap(Dz & �E2)>0. K

Unfortunately, we were not able to find a satisfactory necessary and suf-
ficient condition for the second assertion of Theorem 3.1 to be true.

4. SOME PROPERTIES OF M{*

Consider the condenser (S(+1*), S(+2*)), where +*=+1*&+2* is the extremal
measure for Problem (2.1). Let U_ be the corresponding condenser potential,
that is _=_1&_2 , &_i&=1, _i�0, S(_i)�S(+i*), i=1, 2, while for some
constants a1�0, a2�0,

U_={a1

&a2

q.e. on S(+1*)
q.e. on S(+2*).

(4.1)

Therefore

&a2�U_(z)�a1 , z # C� . (4.2)
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Now, by (2.3) of Theorem 2.2, we have

| U+* d_=| (U+*+Q) d_&| Q d_=F1+F2&| Q d_,

while

| U_ d+*={a1+(1&{) a2

by (4.1). The Fubini theorem then yields

{a1+(1&{) a2=F1+F2&| Q d_. (4.3)

Next, by the definition of M{*, we have for any + # M{*,

| U+ d_�F1 (+)+F2 (+)&| Q d_=F1+F2&| Q d_,

while

| U_ d+�{a1+(1&{) a2

by (4.2). The Fubini theorem and (4.3) then yield

| U_ d+={a1+(1&{) a2 , (4.4)

| (U++Q&F1(+)) d_1&| (U++Q+F2(+)) d_2=0. (4.5)

After these preliminaries we turn to the study of M{*.

Lemma 4.1. Let +=+1&+2 # M{*. Then

(i) S(+1)�S(_1) _ [z: U_(z)=a1], S(+2)�S(_2) _ [z: U_(z)=&a2].
In particular, S(+1) & S(+2)=<.

(ii) U++Q�F1 (+) everywhere on S(_1), U++Q�&F2 (+) every-
where on S(_2). In particular, U + is bounded on S(_).

(iii)

U++Q={F1 (+)
&F2 (+)

q.e. on S(_1)
q.e. on S(_2).
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Proof. Assume z � S(_1) _ [z: U_(z)=a1]. Then U_(z)<a1 and z � S(_1).
Therefore U_ is upper semicontinuous in some disk Dz centered at z. This
implies that, for some =>0, U_�a1&= in Dz . By (4.4), (4.2) we conclude
that +1 (Dz)=0, so that z � S(+1). The proof of the second inclusion in (i)
is similar.

Next, since S(+1) & S(+2)=<, the function U++Q is lower (upper)
semicontinuous on S(_1) (on S(_2)). Since the first integrand in (4.5) is
non-negative q.e. on S(_1) and the second is non-positive q.e. on S(_2), we
obtain

U++Q=F1 (+), _1 -a.e. on S(_1),

U++Q=&F2 (+), _2 -a.e. on S(_2).

These equalities and the semicontinuity of U+ and Q, prove (ii). Part (iii)
then follows by the definitions of F1 (+), F2 (+). K

Corollary 4.2. Assume that Int E1=Int E2=<, and the complement
of E1 _ E2 is connected. Then M {*=[+*]; that is, the solution of problem
(2.2) is unique.

Proof. Let +=+1&+2 # M {*. Our assumption implies (via Lemma
4.1(i)):

S(+i)�S(+i*)=S(_i), i=1, 2. (4.6)

Therefore, the potential U+&+* is harmonic in C� "S(+*) and equals 0 at �.
Since +, +* # M {* , we have

F1 (+)&F1 (+*)=&F2 (+)+F2 (+*).

Then, by Lemma 4.1(iii), we obtain that U+&+*=const q.e. on its support.
Next, by Lemma 4.1(ii), U+ is bounded from above (from below) on

S(+1*) (on S(+2*)). Therefore (see (4.6)), U+ is bounded on compact subsets
of C. So is U+*. Hence U+&+* is a bounded harmonic function in C� "S(+*),
which is constant q.e. on S(+*) and 0 at �. Therefore it is identically zero,
which gives +=+*. K

Lemma 4.3. All the measures from M {* have the same balayage on S(_).

Remark. It is not true that they have the same balayage on S(+*). See
Example 2.4, in which

S(+1*)=[z: |z|=1], S(+2)=[z: |z|=R1] _ [z: |z|=R2]

and there is + # M{* such that S(+1)=[z: |z|=1], S(+2)=[z: |z|=R2].
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Proof of Lemma 4.3. We prove that for any + # M {*, +̂=+̂*, where the
hat symbol stands for the balayage on S(_). It is known, that for some
constants c1i , c2i

U +̂i=U+i+c1i q.e. on S(_ i)

U +̂*i =U+*i+c2i q.e. on S(_ i),

while � sign holds everywhere in C. Reasoning as in the proof of
Corollary 4.2, we see that U +̂&+̂* is a bounded harmonic function in
C� "S(_), equal to 0 at �, and constant q.e. on S(_). Hence +̂=+̂*. K

We have seen (in Example 2.5) that, for +1&+2 # M {* , the set S(+2) may
intersect E1 , but then ``infE1

''(U++Q) is attained on E1"S(+2). This is a
general feature of + # M {*.

Lemma 4.4. Let + # M {* , and assume S(+2) & E1 {<. Then

(i) E1 is not connected;

(ii) E1 can be decomposed into the union of two disjoint compacta E$1 ,
E"1 , such that

cap E$1>0, S(+2) & E$1=<, E"1 {<

and

``inf
E$1

''(U++Q)=F1 (+). (4.7)

Similar assertions hold for E2 , given that S(+1) & E2 {<.

Proof. Fix =>0 small enough, so that E =
1 & E2=< (recall the nota-

tion (3.6)). E =
1 is a finite union of disjoint domains. Let G1 , ..., Gk be those

domains for which

S(+2) & Gi=<, i=1, ..., k,

and let Gk+1 , ..., Gl be the remaining domains, so that

S(+2) & Gi {<, i=k+1, ..., l.

Let

E$1=E1 & \.
k

i=1

Gi+ , E"1=E1 & \ .
l

i=k+1

Gi+ .
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By assumption, E"1 {<. For k+1�i�l, let Ki :=E =�2
1 & Gi . Then Ki is a

compact subset of Gi , and, by assumption, +2 (Ki)>0. Let us sweep out
that part of +2 onto �Gi , and let +~ =+1&+~ 2 be the resulting measure.

Inside each Gi we have

U+~ =U++|
Ki

gGi
( } , t) d+2 (t), (4.8)

where gG( } , t) stands for the Green function of a domain G with a pole at
t. We shall prove in a moment that for any compact K/G,

inf
z, t # K

gG(z, t)�c>0, c=c(K). (4.9)

Assuming this, we deduce from (4.8) that

``inf
E"1

''(U +~ +Q)>F1 (+).

Also, U+~ =U+ outside � l
i=k+1 Gi . In particular this holds on E2 and on

E$1 . Therefore, if we had

cap E$1=0 or ``inf
E$i

''(U ++Q)>F1 (+),

we would obtain that

F1 (+~ )+F2 (+~ )>F1 (+)+F2 (+),

contradicting (2.4) of Theorem 2.2 (recall that + # M {*). It thus remains to
prove (4.9).

Write g(z, t)=log |z&t|&1+u(z, t), where t # K and u(z, t)=log |z&t|
for q.e. z on �G. Note that for any t # K, u(z, t) is a bounded harmonic
function in G (cf. [HaKe, p. 250]).

Since for t, t$ # K, z # �G"I, cap I=0 we have

u(z, t)&u(z, t$)=log } z&t
z&t$ }=O( |t&t$| )

uniformly for t, t$ # K, z # �G"I, the maximum principle yields

|u(z, t)&u(z, t$)|�c |t&t$|, z # G, t, t$ # K.

Applying the symmetry of u(z, t) we see that u is jointly continuous on
K_K. This immediately gives (4.9). K
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We also mention a simple property that follows directly from Lemma
4.1(i):

Lemma 4.5. Let + # M {* and let G be any (connected ) component of
C"S(_). Then +2 (G)=0 if �G/S(+1), and +1 (G)=0 if �G/S(+2). If �G
contains points of both S(_1) and S(_2), then +1 (G)=+2 (G)=0.

Finally, we present a result that strengthens part (iv) of Theorem 2.2.

Theorem 4.6. For any + # M{ there holds

`` inf
S(_1)

''(U++Q)&``sup
S(_2)

''(U++Q)�F1+F2 . (4.10)

If equality holds, and S(+)/S(_), then +=+̂* (the balayage of +* on S(_)).

Proof. We have

{a1+(1&{) a2 �| U_ d+=| U + d_

�`` inf
S(_1)

''(U ++Q)&``sup
S(_2)

''(U++Q)&| Q d_.

The result now follows, in view of (4.3).
If equality holds and S(+)/S(_), we consider U+&+̂* and, reasoning as

in the proof of Corollary 4.2, obtain that U+&+̂*=0. K

5. CHARACTERIZATION OF WEAK-STAR LIMIT
POINTS OF &(Rmn)

Theorem 5.1. Let w be an admissible weight on E1 _ E2 , and let [rmn] be
an asymptotically extremal sequence. Assume &mn :=&(rmn) � +, (m, n) # N{ .
Then we have:

(i) + # M {*, if S(+) is compact;

(ii) + # M� {*, if S(+) is not compact.

More precisely, let R>0 be large enough so that the disk DR=[z: |z|<R]
contains E1 , E2 . Replace that part of + that sits outside DR by its balayage
onto �DR , and let +R denote the resulting measure. Then +R # M{*, and +R � +
as R � �.
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Proof. It is given that

&mn=: &mn, 1&&mn, 2 � +1&+2=+, (5.1)

while

F1 (&mn)+F2 (&mn) � F1+F2 , (m, n) # N{ . (5.2)

(i) If S(+) is compact, take R large enough so that the disk DR con-
tains S(+) as well as E1 , E2 . Then &mn has a mass o(1) on |z|>R. Replace
this part of + by its balayage on |z|=R. This will add a constant to U &mn

in DR , so that (5.2) will hold for a new + as well. Also, the limit of
&mn remains the same. Thus, we may assume that S(&mn)/DR , for all
(m, n) # N{ .

Let =>0 be small enough. If we know that

&mn, 1 (E =
2)=o(1), &mn, 2 (E =

1)=o(1), (m, n) # N{ , (5.3)

we proceed as follows. Take the balayage of &mn, 1 (of &mn, 2) from E =
2 (E =

1)
onto �E =

2 (�E =
1). This will not change the limit measure, while the quantity

F1 (&mn)+F2 (&mn) can only increase. Therefore (by (5.2) and Theorem 2.2
(iv)), the relation (5.2) will hold for a new &mn . But now we have, for
z # E1 ,

U &mn, 1 (z)&U &mn, 2 (z)+Q(z)�
m

m+n
log

1
R

&
n

m+n
log

1
=

+min
E1

Q

which implies that the sequence [F1 (&mn)] is bounded from below.
Similarly, one can show that [F2 (&mn)] is bounded from below. Then (5.2)
implies that these sequences are bounded. Passing to a subsequence, we
may assume that for some constant A,

F1 (&mn) � F1+A, F2 (&mn) � F2&A, (m, n) # N{ .

Since

U&mn, 2 (z)�U &mn, 1 (z)+Q(z)&F1 (&mn) q.e. on E1 ,

the lower envelope theorem yields

U+2 (z)�U+1 (z)+Q(z)&F1&A, q.e. on E1 .

Thus, F1 (+)�F1+A. Similarly, F2 (+)�F2&A, and we conclude (by
Theorem 2.2(iv)) that + # M {*. If (5.3) does not hold, we apply the same
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reasoning as in the proof of Lemma 4.4 and show that there exist E$1 /E1 ,
E$2 /E2 such that F1 (&mn), F2 (&mn) are attained on E$1 , E$2 respectively,
while

&mn, 1 (E$2)=o(1), &mn, 2 (E$1)=o(1), (m, n) # N{ .

Reasoning as above, we conclude that the sequences [Fi (&mn)], i=1, 2, are
bounded, and the rest of the proof remains the same.

(ii) If S(+) is not compact, take R large enough and replace that part
of &mn that sits on |z|>R by its balayage on |z|=R. Let &R

mn be the resulting
measure. Then

F1 (&R
mn)+F2 (&R

mn)=F1 (&mn)+F2 (&mn) � F1+F2 ,

and &R
mn � +R, (m, n) # N{ . By what we have proved, +R # M {*. The relation

+R � + as R � � is obvious. K

Corollary 5.2. Assume Int E1=Int E2=< and C"(E1 _ E2) is con-
nected. Then for any asymptotically extremal sequence [rmn] we have
&(rmn) � +*.

Proof. Apply Corollary 4.2. K

Other corollaries concerning the limit points of &(rmn) can be drawn,
using the results of Section 3. However, we do not have a complete descrip-
tion of all limit points of &(rmn) in the general case. Yet, we do have the
following result, which generalizes the result due to Mhaskar and Saff
[MhSa] for the polynomial case.

Theorem 5.3. Let [rmn] be asymptotically extremal. Modify &mn in the
following way. Let G be any connected component of C"S(_). If �G/S(_1)
(�G/S(_2)) replace &mn, 1 (&mn, 2) restricted to G by its balayage onto �G.
Then the resulting distribution, &~ mn , converges weak-star to +̂*, the balayage
of +* onto S(_).

Proof. Clearly, we have

`` inf
S(_1)

''(U &~
mn+Q)&``sup

S(_2)

''(U &~
mn+Q)�F1 (&mn)+F2 (&mn).

Note that if G is as above, then |&~ mn (K)|=o(1) for any compact K/G.
Indeed, if �G/S(_i), i=1 or i=2, this is true by construction, and
otherwise we have &a2<U _<a1 in K, and we may appeal to the begin-
ning of Section 4. Thus, if & is any weak-star limit of [&~ mn], then
S(&)/S(_).
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Reasoning as in the proof of Theorem 5.1, we find that for this &, equality
holds in (4.10), and the result follows from Theorem 4.6. K

6. THE CASE OF UNBOUNDED SETS

Assume first that only one set, say E1 , is unbounded, and Q satisfies (i),
(ii) of Definition 2.1.

Pick c � E1 _ E2 and apply the Mo� bius transformation

z=c+(`&c)&1=: f (`).

This will transform (cf. [LeSa]) problems (2.1), (2.2) into similar ones,
with compacta E� 1 , E� 2 and with Q replaced by

Q� (`) :=Q( f (`))+(1&2{) log
1

|`&c|
, c # E� 1 .

By the assumptions (i), (ii) on Q, Q� satisfies these as well, except perhaps
at `=c. To ensure that Q� is lower semicontinuous at c, one can impose the
following additional condition on Q:

(iii) Q(z)+(1&2{) log |z| is lower semicontinuous at �.

If both sets are unbounded (but a positive distance apart) one can impose
a stronger condition (cf. [SaTo]) on Q, namely

(iii)$ Q(z)&log |z| � � as z # E1 _ E2 � �.

This forces +* to have a compact support (see [SaTo] for details).

7. APPLICATION TO MINIMAL BLASCHKE PRODUCTS

Let 0 be an arbitrary domain in C and let E/0 be compact with
cap E>0. Given w=exp(&Q) (with Q satisfying (i), (ii) of Definition 2.1
on E1 :=E), consider the quantity

$n (E) :=inf
Bn

&Bnwn&E , (7.1)

where

Bn (z) :=exp {&:
n

1

g(z; :k)&i :
n

1

g~ (z; :k)= , :k # 0
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(g~ stands for the (multiple-valued) conjugate function of the generalized
Green function g of 0).

Let &n :=n&1 �n
k=1 $:k

, and let &̂n be the balayage of &n onto �0. It is
known that

1
n

:
n

1

g(z; :k)=U &
n (z)&U &̂

n (z)+cn , (7.2)

where cn=0 if 0 is bounded and cn=n&1 �n
1 g(�; :k) otherwise.

Thus, if we define Q to be zero on �0 and set +n :=&n&&~ n , we can
rewrite (7.1) as

1
n

log
1

$n
=sup

+n

[inf
E

(U++Q)&sup
�0

(U ++Q)] . (7.3)

Consider the energy problem

V :=inf {I(+)+2 | Q d+: +=+1&+2 , S(+1)/E, S(+2)/�0= ,

&+1&=&+2&=1.

This problem coincides with (2.1) for {=1�2, except that &+i &=1 instead
of 1�2.

Let +*=+1*&+2* be the equilibrium distribution for this problem. Then
[SaTo] +2* coincides with +̂1*, the balayage of +1* onto �0. With this
observation in mind, the following results follow from Theorems 3.1 and
5.3:

(i) limn � � n&1 log($&1
n )=V;

(ii) Let [Bn] be asymptotically extremal. Note that in our case
S(_2)=�0, S(_1)= boundary of polynomial convex hull (relative to 0)
of E. Modifying &n as usual, we obtain &̂n � +̂* ( 7 means balayage
on S(_)).

These assertions should be compared with those of Fisher and Saff
[FiSa].
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